Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells.
نویسندگان
چکیده
A 31-kb fragment of the large virulence plasmid of Shigella flexneri is necessary for bacterial entry into epithelial cells in vitro. One locus of this fragment encodes the IpaA, -B, -C, and -D proteins, which are the dominant antigens of the humoral immune response during shigellosis. To address the role of the ipa genes, which are clustered in an operon, we constructed a selectable cassette that does not affect transcription of downstream genes and used this cassette to inactivate the ipaB, ipaC, and ipaD genes. Each of these nonpolar mutants was defective in entry and lysis of the phagocytic vacuole but was not impaired in adhesion to the cells. We showed that, like IpaB and IpaC, IpaD is secreted into the culture supernatant and that none of these proteins is necessary for secretion of the other two. This result differentiates the Ipa proteins, which direct the entry process, from the Mxi and Spa proteins, which direct secretion of the Ipa proteins. Moreover, lack of either IpaB or IpaD resulted in the release of larger amounts of the other Ipa polypeptides into the culture medium, which indicates that, in addition to their role in invasion, IpaB and IpaD are each involved in the maintenance of the association of the Ipa proteins with the bacterium.
منابع مشابه
IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes.
Shigella flexneri causes human dysentery after invading the cells of the colonic epithelium. The best-studied effectors of Shigella entry into colonocytes are the invasion plasmid antigens IpaC and IpaB. These proteins are exported via a type III secretion system (TTSS) to form a pore in the host membrane that may allow the translocation of other effectors into the host cytoplasm. TTSS-mediated...
متن کاملSoluble invasion plasmid antigen C (IpaC) from Shigella flexneri elicits epithelial cell responses related to pathogen invasion.
Shigella flexneri invades colonic epithelial cells by pathogen-induced phagocytosis. The three proposed effectors of S. flexneri internalization are invasion plasmid antigens B (IpaB), IpaC, and IpaD, which are encoded on the pathogen's 230-kb virulence plasmid and translocated to the extracellular milieu via the Mxi-Spa translocon. To date, there are no definitive functional data for any purif...
متن کاملInteraction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells
Shigella is a genus of highly adapted bacterial pathogens that cause bacillary dysentery in humans. Bacteria reaching the colon invade intestinal epithelial cells by a process of bacterial-directed endocytosis mediated by the Ipa proteins: IpaB, IpaC, and IpaD of Shigella. The invasion of epithelial cells is thought to be a receptor-mediated phenomenon, although the cellular components of the h...
متن کاملCharacterization of invasion plasmid antigen genes (ipaBCD) from Shigella flexneri.
The large invasion plasmid of Shigella flexneri M9OT-W was used to generate recombinant plasmids carrying the ipaA, -B, -C, and -D genes, whose products are associated with the entry of the bacteria into colonic epithelial cells. Complete DNA sequences of ipaB, -C, and -D were determined. The proteins predicted (62, 42, and 37 kDa, respectively) from the nucleotide sequences lack a signal-pepti...
متن کاملMolecular cloning of invasion plasmid antigen (ipa) genes from Shigella flexneri: analysis of ipa gene products and genetic mapping.
Tn5-tagged invasion plasmid DNA (pWR110) from Shigella flexneri serotype 5 (strain M90T) was cloned into the expression vector lambda gt11. Recombinant phage (lambda gt11Sfl) expressing pWR110-encoded polypeptide antigens were identified by using rabbit antisera directed against S. flexneri M90T invasion plasmid antigens. Antigens encoded by lambda gt11Sfl recombinant phage were characterized b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 175 18 شماره
صفحات -
تاریخ انتشار 1993